i

NATIONAL ADVISORY COMMITTEE

FOR AERONAUTICS

TECHNICAL NOTE

,* TNo. 1032

PROPERTIES OF LOW-ASPECT-RATIO Poxnmﬁﬁ.WIHGs ;;ﬁf{; .

AT SPEEDS RELOW AND ABOVE THE SPEED. OF SOUND:

By Robert T. anes. . '-Tfé h-uQ;::

Langley Memorial Aeronautical La'boratopy el
Lanzley Fisld, Va. .

W

Washington ' - ST, _'
March 1914.6 : LT Sl LormowE

NACALIBRARY - fn i o e

LANGLEY MEMORIAL AERONAUTICAL . (. ..

u.rm«mRY L s AL .




3 1176 01353 4145

MATIONAL-ADVISORY, COMMITTEE FOR AERONATUTICS

TECENICAL NOTE NO. 1032 __ " o

PROPERTIES QF LOW- ASPECT RATIO POINTED WINGS

AT SPEEDS ‘BELOW AND ABOVE THE SPEED OF SOUND -

By Robeft T. Jones

. SUMMARY  T° ¢ o e

S—

Low-aspect-ratioc wings having pointed plan forms are
treated on the assumption that the flow potentials in
planes at right anglegs to the long axis of the airfolls
are similar to the corresponding two-dimersional poteén-
tials. For the limiting case of small angles of attack
and low aspect ratios the- theory brings out the following ‘
significant propertiles: T

(1) ™he 1lift of a slendsr, polnted airfoll moving in
the directlion of 1its long axis depends on the increase In
width of the sections in a downstream direction, Sections
behind the section of maximum Width develop no - 1ift

(2 mhe spanwise loadﬁng of such an. aieril 1s inde~
pendent of the pilan form and approaches the distribution
giving a minimum induced drag. S ; f

(%) The 1ift distribution of a polnted alrfoll - R .
travelling point-foremost 1s relatively unaffected by the o
compressibility of the air below or above the spéed of T
sound.. R —

£ test of a triangular alrfoll at a Mach number oo - =
of 1.75 verified the theoretical values of 1lift and center
of pressure.

INTRODUCTION

The assumption of small disturbances in a two- T
dimensional potentlal flow leads to the well-known thin-
airfoll theory of Munk (referencé 1) and the Prandtl- _
(Glsuert rule (references 2 and 3) at specds less than o=



2 e 3 © T R FACA TH Fol 1032 =
sonic. At speeds above the speed of sound appllcation of -
the same assumptions leads to the Ackeret theory (refer-

ence li), according to which the wing sectlons generate \‘ii;

plane sound waves of small amplitude. As is well known,
the. Ackeret theory predlcts a radical change In the prop-
erties of such wings on transition to supersonlc veloclties
ani these changes have been verified by experiments In
supersonic wind tunnels (referencs 5).

- Both the Ackeret theory and the Munk theory apply to
the casé of a wing having a large span and a small chord.
The presént discussion is based on assumptions similar to
those used by Ackeret and Munk but covers the opposite .
extreme, namely, the wing of swall span and large chord.

In the lstter case the flow is expected to be two-
dimensional when viewed 1ln planes perpendiculer to the -
direction of motion. ) -

A theory for the rectangular wing of small aspect
ratio has been given by-Bollay (reference &). Bollay -
assumes a separated, or dlscontinuous, potentlal flow :
similar to the well-known Kirchoff flow and shows that . . =
under these circumstances the 1ift is proportional to *
the square of the angle of attack. Bollay does not con-
sider the effect of compressibility. The present tresat-_.
ment covers other plan forms and, although based‘on 4if-
ferent assumptions, 1s not inconsistent with Bollay's
thecry in the limiting case of small angles of attack.

1}

Ry limiting the plan forms to small vertex angles,
the provncrties of the wings in compressible flow at high
subsonic and at supersonlc speeds are also covered, _
Tsilen (reference 7) has pointed out that Munk's airshilp
thecry (reference 8) applies to=a slender body of revo-
lution at speeds greater than sonic. The 1lift and moment. .
of such a body are not expected to change appreclably
with Mach number. The present paper glves an analysls-—of
the low-aspect-ratio airfoll based on similar assumptions
and shows that little change of the 1lift distributlion of o
an airfoil of pointed plan form lying near the center of =~ L
the ¥ach cone 1s to be expected. e

SYMBOLS

v - flight velocity-

a * angle of attack
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chord _ ' T

© local 1ift coefficlent (

wing ares

: b | 2 LR N _-__
aspect ratlo max
S

distance. along axils of symmetry of pointed airfoil
ieasured downstream from nose

spanwise distande,'measured from axis of symmetry

-~

vertical distance from plane of wing

. - T - e—

time

additional apparent mass (spanwise section)

locsl span _ _ | ”- S —

dgensity of alr
dynamic pressure (%pvé)
local 1ift force -(per unit length)

b dx

.induced drag

induced drag coefficlent. (:—)

total lify

it

1ift coefficient (;i> R o "
: as

surface potential _ T ' -

spanwisze-location paremeter (cos'l 5¥é>

lozal pressure difference

-

Mach number, ratio of flight veloclty to speed of H'"—_{
sound _

distencse of center of pressure from nose 6f_a1rfoii

Pitching moment

pltching-moment coeffliclent =
qk- Cmax
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Ly - - 1ift at Mach pumber M
Lo . 1ift at zero Mach number | - _—

max maximum (used as subsgcript)
THEORY FOR WINGS OF LON ASPECT RATIO

~—The flow about=an airfoll of very low aspect ratio
may he considered two-~dimensional when viewed 1in cross
sections perpendicular to the longitudinal aexts. With
this idealization, the treatment of the low-aspect-ratio
airfoll becomes exceedingly simple; formmlas sare obtalned
that are similar in some respects to those derived by
Munk (reference 8) and Telen (reference 7) for an elon-
gated body of. rcvolution. -

Perhaps the simplest case from the analytical point
of view is that of the long, flat, triangular airfoll
travelling polnt-~foremost at a small angle of attaclk.
Viswed from a reference system mt rest 1In the undisturbed
fluid, the flow pattern in a plane cutting the airfeoill at
a dlastance x from the noesé is the familiar two-
dlmenslonal flow caused by a flat plate having tihre normal
velocity Va. (See filg. l.,) Observed in this plane, the
width of the plate and hence the scale of the flow pattern
continually increase as the airfoll progresses through
the »nlane, This increase in the scale of the flow pattsrn
requires a local 1ift force 1 egual to the downward
velocity Va +times the local rate of increase of the
additional apparent mass m', or

dm?

1}

2

|

since - - - - - - R T T R

V=3

Ry a_well Inown formu}a from two- dimensional Flow

theory,- _ e

=1T—E-p dxn

S

Y

i

!

—
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where b 1is the local width of the plate. Hence ] -

dm! b db e T =
- B : : o=
dx 1T.?_p dx ' : T ~

and the 1ift per unlt 1ength )/ will be given by the
expression o _ T

- aalv2p 22 . _
4 Tasv b ax ax B -

Dividing by g-va and by the area b dx gives the local
11ft coefficient : | S

CZ = wa El_y-.- . ) ‘_(l)
#hen this flow is conslidered 1n more detail, it 1is

found from the two-dimensional theory that the surface’
potential @ 1is distributed spanwlse according to the_

ordinates of an ellipse, that is, - _ ~“;f -
, g = wva\[(3) ‘/

= *Va E sin @ - —(2) L

where c¢coas 8 = S%E- and the sign changes in going from . )

the upper to the lower surface of the airfolil. (See -fi .z

fig. 2.) An instant later, in the same plane, the
ordinates are those of a slightly larger ellipse, corre- -

gsponding to an incrcase of . The local pressure dif—
ference is given by the local rate of increase of &, :
thet is, _ _ _ o T o
N ; : L
=2, &
Bp = 2P ¢ L
= 2pV 99: _ - e
- a o
- . _g 5 )

éb dx
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where Of/db 1s a functlon of V. Difrerqnﬁiayion of #—
yields Lne equation . _ T R

= ap=ooV® b @b
) AP = 20V =

or

=

js) - 2a Jdb -
2p %2 L)
q sin 6 dx (hy _

The préssure distribution thus shows an infinite pealk : _
dlorg the sloping sides 'of the airfoil similar to the . R
pressure pealr at the leading edge of a conventional air- e
Toil. The distribution alo radiel lines passing through

the vertex of the triangle n%lines of constant o is v
uniform, however {(fig. )), and tke conter of prcsuure e fy_.
coincides witli- the center .of area. _ R~

Equations (1) and (}).show that the develormsnt of ( )
1ift by the long slender alrfoll depvends on an expansion
of the sections in a downstream dlrcction, hence a pert ;
cf the surface having parallel sides would develop no ce e ez
lift. - Furthermore, & decrsasling width would, according : e
to equation (h), require negative lift with inflnlta.__. e e
negaive pressure posaks along the edges of the narrowsr T
sectlons. In the actgal flow, however, the edge bel:ind
the maximum cross secticn will 1ie In the viscous or .
turbulent wake Formed over the surface ahead; and for ~o-
this ré&ason it willl be assumed that the infinlte pressura :
difference indicated by equation (3) cannot be developed
across these edgeg.s It is this assumntion, corresponding
to the Kutta condition, which gives the plate the »rop- -
erties of an airfoll as distinct from anotber type of

body, such as & body of revolutlon. ; N _ .'S.";
_ S . .
Wilth thie -ald of the RKubtta condition, it may easlily N
be shown that sections of the 2irfoil behind the section - i B
of gregatesat width develop no 1ift. A potential flow -
satwsfying botihh the boundary condition and the. Kutta con-: oon .

dition may be obtalned by the Introduction of a frze sur-
f'ace of discontlnuLtv—buhind the wldest section, This
surface of dlscontinuit (fi would be couposed of
parallel vortices ox tengl gownstream Tfrom the widest
section of the airfoill as prolongations of the v01t«ces

- |
; i _'-H
~ . R

~
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representing the discontinuity of potentlial over the for-
ward nart of the alrfoll. This sheet, although possibly -
wider than the downstream sections of the airfoil, still
sgtisfles their boundary condition, slnce the 1ateral
arrangement of the vortlces 1s such as to give unliform
downward velocity equal to Va over the entire width of
the sheet including the rearward portion of the airfoil.
Since the presgsure difference across the airfoll 1s pro- N
portional to oO@/dx and since this gradient disappears -
as soon as the vortices become parallel to the stream, T
no 1ift is developed on the rearward sections. =~ ~

Integration of the pressures in a chordwise direction
from the leading edge downstream to the wldest sectlon L
will give the span load distribution and the induced drag. -
The span losd distribution is :

oL _ ”

or, from equation (3),

L = 20vg S T
Ay -

¥rom equation (2),

nalax_sin o L=

. b
”¢~= Va

Hence .0L/0y 1is. elliptical and independent of .the. plan
form. With the elliptilcal span load. ths induced drag is

a minirmum and is equal to _ | _;
2 : .
l "quax e e - DA

. A second integration of gL dy s&across the widest
: - . v : o .
section gives the total 1lift, which 1is
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The lift of the slender airfoil therefore depends only )
on the width and not on the area. If the 1ift is divided -

by pV2S and if the aspect ratio. A 1is constdered to n _
[ 2 N . ) y
. - ) 1T oy
Cp, = g4c (P -
and the induced-drag coefficient is | _ o 3
_ 2
' C T e
D1 A e
= 2
= 0L 3 (8) _ -
—_ P e R )

From equation (8) 1t- appears that the resultant force—
lies halfway between the normal to the surface and the
normal to the air stream. : o - : %

It~ 1s seen that in the case of a rectangular plan
form the simplified formula (equation (L)) glves an
infinlte concentration of 1ift at the leading edge and
no 1lift elsewhere, whereas a more accurate theory would
show some distribution of the 1lift rearward. If the rate
of increamse of the width becomes too great, the flow can-
not be expected to remain two-dimensiocnal. It can be
shown by examination of the known three-dimensional . e
(nonlifting) potential flow around an elliptic disk :
(reference 9), however, that the two-dimensional theory
glves a good approximation in the case of an elliptical
leading edge, which indicates that the theory is -sappll-
cable over a large range of nose shapes. In flgure 5 1s
shown a ¢omparlson of the 1lift calculated by the present
theory for elliptical wings of low aspect ratio with the
results of the more accurate three-dlimensional potentlal-

flow calculations of Krienes (reference 10). The. results N
are in good agreement up to aspect ratlos approaching 1. .
Application of equation (L) glves a center of pressure ' ‘
on the elliptical plan form at one-sixth of the .chord. [

FPigure -6 also shows this value compared with values given
by Krlenes's theory. In thls respect 1t appears that
the agréément is not S0 good as for the 11ift.
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EFFECT OF COMPRESSIBILITY . -

In order to show the effect of compressibility, -
use will be made of the theory of potasntial flow with -
small disturbances. Glauert (reference 2) arid Prandtl ’
(references 3) have demonstrated that, at subsonic Speeds,
a distribution of potential satisfylng Laplace's equa- I —
tion will satisfy the linearized compressible-flow equa- -
ticn 1f the distribution @(x,v,z) 1is foreshortened
along the direction of motion bv the transformatlon

= -
X! = e ¥yt =5 z! = 2z

Vi o= M : ' o S -

This fact may be spplied in a calculation procedure by
starting with a fictitious airfoil longer in. the B
¥x-direction than the true one and calculating the potcn— )
tial distribution for this airfaoil by methods of incom- "~ - ——
pressible flow. The correct dimensions and-correct - = --— =
distribution of ¢ - are then obtained when the trans-’ ' '
formation is anplied.

For the long slender airfoil, the potential distri-
bution at. each section is similar %o that for en infl- .
nitely long body; therefore 0Z/0x and hence the local o
pressures vary 1n inverse oroport1on to the length. The -
foregoing calculation procedure gives a null result in - = Co
this case; since thsz pressures calculated for the fieti- 7
tious airfoil at .M =0 will be reduced in the same
ratioc that the len zth is incresased and the Lorentz trans~ )
formation to restore the correct length will also restore .
the same pressures as those obtained at 7 = BT Slnce_, ST T
&@/dz . is unchanged by the transformatior, €the nornal oL T o
velocity component and hence the angle of attack are - . . . :
unchanged also. These results can be obtalned.by refer-

ring directly to the linearized equation or the ponential'

G- ) az 62 szf - | )

(See reference 5. ) If the airfoil 1s surflciently slender,

d ¢76x can be neglected in comparison with. . o¢/8x
except near the edge. Since the 1ift 1s proportional

RV B A I

;"
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to 3¢/dx, thHe increase of ﬁhe_lift with Mach number = _ e
can therefore be neglected in comparison with the Lift. -

o ti’

It is important to note that the theory of snmall
disturbanceés: 1s not‘lxmited to subsonlc velocities and

that;*%0 long" as the term (l - M2>——g in equation (9)

renalns sm&ll, the solution in the reg on.of the wing
will- continue—to be given by the potential (equation Gﬂ) .
*v1dently the Mach number cannot be increased indefi-~

nitely, for then the.coefficient of aZQ/éx will become

80 large that the first term will no longer beg negli- .

gible. "The rsquired condition will be satisfied, howevor,

by adopting & pointed plan form with the vertex anule so o
small that the éntire surface lies néar the center of . U
the Mach cone (fig. 7). The condition of a small vertex -
angyle 1s also necesgsary in order that the potentiel diaz- R
tribution of equation (2) mdy apply. In the case of a . B
wing-with a blunt- leaalng-edge plan form, abrupt chianges ’
in the flow arise on transition' to supersonic velothies,

and potentlal flow of the subsonic type no longer exists.

The 1ift and 1lif't distrlbution for: rectaggular . =
surfaces at supersonlc speeds kave been cslculated by _ -
Schlichting (reference 1l). Figure 7 shows tke varila- . EE—
tion of lift-curve slope witl. Mach number as obtained . —
from Schlichting's ‘results for rectangulear wings of two
dirferent aspect ratios and for’ thé range of speeds in Z
which -the two Mach cores from the tips do not reach the o 2
center of the wing. In the subsonic rangs, values” givén = o
by the. Prandtl-Gleuert rule are shown, These curves arc
compared with the veliles Indicated by the present Lheorv .
for a triangular wing lying near the center of the Mach e
cone. Flgure § shows the travel of the center of pres- . .
sure [for these plan forms. It ls to be noted that, with .. _. ._._
the blunt-leading-edgé plen forms, the center of vressure . .
travels froin a point néar the. quarter chord to a point~ ___
near the. midchord when' the velocity is 1ncreased gbove ) : -
the spesd of sound. 3 ) - L s

iy



L

WACA TN No. 1032 : 11
TESTS OF A TRIANGULAR AIRFOIL. AT SUPERSONIC SPEED

Ls a test of the foregoing analysls, a small trian-
gular airfoil in the form of a steel plate with rounded
leading edgesg was constructed and tested 1in 'the" Langley
model super<onic tunnel. The tests were made at a Mach

fwmber ‘of '1.75. PFigure 9 shows the details of the model

and figure .10 summarizes the results of the test. At
zero angle of attack a small 1lift &nd a smell pltching
moment occur, which are presumably the result of the

cember given the airfoil by rounding off the leading edges

in the manner shown by section A-A in figure 9. In

~eneral the results -are 1n good agreement with the theory

if an allowance is made for this camber, as shown in
figure 10. : T

CONCLUSTIONS

‘1, The 1ift of a slender, pointed airfoil moving in
the dircction of its long axis depends on the increase - _

in.. width of .the sections in a downstream direotion.

Secnions,behind the..section of maximum width develop no
1ift. L . 00 -

The spanwise. -loading of such an alrfoll is inde-
pendent of the plan form .and approaches the distribution
giving & minimum induced drag. _ )

3, The 1ift distribution of a pointed airfoll

" trdvelling point-foremost is relatively unafiscted by

the compressiblility of the air below or above tbe speed.
of sound. )

1 .
¢

Langley Memorial Aeronautical Laboratory I
Vational Advisory Committee for heronautics
Langléy Fileld, Va., May 11, 1945
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Figure 1,- Flow pattern.

Figure 3.~ Pressure Alstribation,
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Figure 5,- Comparison of lift caloulated by present theory for elliptical wings of
low aspeot ratio with results of Krienes. {reference 10).
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Figure 10.~ Test of triangular airfoil in Langley model supersonis
tunnel. Mach number, 1l,75; Reynolds number, 1,600,000,



